Rainer E . Perspective of Monge properties

نویسندگان

  • Bettina Klinz
  • Riidiger Rudolf
چکیده

An M x n matrix C is called Mange matrix if c,, + cTT < clr + cr, for all 1 < i -c r < rn, 1 < j < s d n. In this paper we present a survey on Monge matrices and related Monge properties and their role in combinatorial optimization. Specifically, we deal with the following three main topics: (i) fundamental combinatorial properties of Monge structures, (ii) applications of Monge properties to optimization problems and (iii) recognition of Monge properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and multiplicity of positive solutions for singular‎ ‎Monge-Amp‎‎$‎rmgrave{e}‎$re system

Using the fixed point theorem in a‎ ‎cone‎, ‎the existence and multiplicity of radial convex solutions of‎ ‎singular system of Monge-Amp`{e}re equations are established‎.‎

متن کامل

On the Traveling Salesman Problem with a Relaxed Monge Matrix

We show that the traveling salesman problem with a symmetric relaxed Monge matrix as distance matrix is pyramidally solvable and can thus be solved by dynamic programming. Furthermore, we present a polynomial time algorithm that decides whether there exists a renumbering of the cities such that the resulting distance matrix becomes a relaxed Monge matrix.

متن کامل

Optimierung Und Kontrolle Projektbereich Diskrete Optimierung on the Tsp with a Relaxed General Distribution Matrix on the Traveling Salesman Problem with a Relaxed Monge Matrix

We show that the traveling salesman problem with a symmetric relaxed Monge matrix as distance matrix is pyramidally solvable and can thus be solved by dynamic programming. Furthermore, we present a polynomial time algorithm that decides whether there exists a renumbering of the cities such that the resulting distance matrix becomes a relaxed Monge matrix.

متن کامل

The Quadratic Assignment Problem with a Monotone Anti-Monge and a Symmetric Toeplitz Matrix: Easy and Hard Cases

This paper investigates a restricted version of the Quadratic Assignment Problem (QAP), where one of the coefficient matrices is an Anti-Monge matrix with non-decreasing rows and columns and the other coefficient matrix is a symmetric Toeplitz matrix. This restricted version is called the Anti-Monge–Toeplitz QAP. There are three well-known combinatorial problems that can be modeled via the Anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003